Agent Discovery¶
Agent discovery is the core functionality of A2A Registry, enabling agents to find and connect with each other in distributed systems.
Overview¶
The A2A Registry implements a centralized discovery pattern where:
- Agents register their capabilities and metadata
- Other agents search for services they need
- Direct connections are established between agents
- Registry maintains an up-to-date directory
Discovery Mechanisms¶
1. Name-Based Discovery¶
Find agents by their exact name:
2. Capability-Based Discovery¶
Search for agents with specific skills:
curl -X POST http://localhost:8000/agents/search \
-H "Content-Type: application/json" \
-d '{
"skills": ["weather_forecast", "location_lookup"]
}'
3. Metadata Search¶
Find agents using description or other metadata:
curl -X POST http://localhost:8000/agents/search \
-H "Content-Type: application/json" \
-d '{
"query": "machine learning model"
}'
4. Full Listing¶
Retrieve all registered agents:
Discovery Patterns¶
Service Discovery Pattern¶
Agents discover services they depend on:
# Agent looking for translation services
translation_agents = registry.search_agents(skills=['translate'])
for agent in translation_agents:
if 'spanish' in agent['description'].lower():
# Connect to Spanish translation service
translator = connect_to_agent(agent['url'])
Capability Advertisement¶
Agents advertise their capabilities for discovery:
# Agent registering translation capabilities
agent_card = {
"name": "spanish-translator",
"description": "Real-time Spanish translation service",
"skills": [
{"id": "translate", "description": "Translate text to/from Spanish"},
{"id": "detect_language", "description": "Detect source language"}
]
}
Dynamic Discovery¶
Agents can discover services at runtime:
async def find_weather_service():
agents = await registry.search_agents(skills=['weather'])
# Select best agent based on criteria
return select_best_agent(agents)
# Use discovered service
weather_agent = await find_weather_service()
forecast = await weather_agent.get_forecast("New York")
Discovery Filters¶
Skill-Based Filtering¶
Version Filtering¶
Protocol Filtering¶
Discovery Best Practices¶
1. Descriptive Naming¶
Use clear, descriptive names for agents:
- ✅
weather-forecast-service
- ✅
nlp-sentiment-analyzer
- ❌
agent1
,service-x
2. Rich Skill Descriptions¶
Provide detailed skill information:
{
"id": "analyze_sentiment",
"description": "Analyzes sentiment of text using BERT model",
"parameters": {
"text": "string",
"language": "optional string, default: en"
},
"returns": {
"sentiment": "positive|negative|neutral",
"confidence": "float 0-1"
}
}
3. Regular Health Updates¶
Keep agent registrations current:
# Periodic health check and re-registration
async def maintain_registration():
while True:
await registry.update_agent_health(agent_id)
await asyncio.sleep(30) # Every 30 seconds
4. Graceful Deregistration¶
Properly deregister when shutting down:
Discovery Architecture¶
Registry-Centric Model¶
graph TB
A[Agent A] --> R[A2A Registry]
B[Agent B] --> R
C[Agent C] --> R
D[Agent D] --> R
R --> A
R --> B
R --> C
R --> D
Discovery Flow¶
- Registration Phase
- Agents register capabilities
- Registry stores metadata
-
Health monitoring begins
-
Discovery Phase
- Agents query registry
- Registry returns matches
-
Agents evaluate options
-
Connection Phase
- Direct agent-to-agent connection
- Registry not involved in communication
- Health status updates continue
Performance Considerations¶
Caching Strategies¶
- Cache frequently accessed agent information
- Implement TTL for cached entries
- Use registry notifications for cache invalidation
Load Balancing¶
When multiple agents provide the same service:
def select_best_agent(agents):
# Load balancing strategies:
# 1. Round robin
# 2. Random selection
# 3. Health-based selection
# 4. Geographic proximity
return min(agents, key=lambda a: a.get('load', 0))
Fault Tolerance¶
- Implement retry logic for discovery requests
- Handle registry unavailability gracefully
- Cache last-known agent locations
Integration Examples¶
FastA2A Integration¶
from fasta2a import FastA2A
from a2a_registry import A2ARegistryClient
# Create FastA2A agent with registry integration
app = FastA2A()
registry = A2ARegistryClient("http://localhost:8000")
@app.on_startup
async def register_with_registry():
await registry.register_agent(app.agent_card)
@app.skill("find_service")
async def find_service(service_type: str):
agents = await registry.search_agents(skills=[service_type])
return {"available_services": agents}
gRPC Service Discovery¶
import grpc
from a2a_registry import A2ARegistryClient
async def discover_grpc_service(service_name):
registry = A2ARegistryClient("http://localhost:8000")
agents = await registry.search_agents(
query=service_name,
preferred_transport="grpc"
)
if agents:
agent = agents[0]
channel = grpc.aio.insecure_channel(agent['url'])
return MyServiceStub(channel)
raise ServiceNotFoundError(f"No gRPC service found for {service_name}")
Next Steps¶
- Explore Registry Architecture
- Learn about Protocol Support
- Review API Reference
- Check out Discovery Examples